Anzeige

Ausgaben

Eigenschaften des Osteozytennetzwerks in gesundem und erkranktem Knochen

Zeitschrift: Osteologie
ISSN: 1019-1291
Thema:

Osteozyt: Morphologie & Funktion

Ausgabe: Hefte von 2016 (Vol. 25): Heft 2 2016 (57-138)
Seiten: 69-76

  1. Kanis JA, Odén A, McCloskey EV et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 2012; 23 (9): 2239-2256. DOI:10.1007/s00198-012-1964-3
  2. Cooper C, Campion G, Melton LJ. Hip fractures in the elderly: A world-wide projection. Osteoporos Int 1992; 2 (6): 285-289. DOI:10.1007/BF01623184
  3. Milovanovic P, Zimmermann EA, Riedel C et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials 2015; 45: 46-55. [Epub 2015/02/11]
  4. Launey ME, Buehler MJ, Ritchie RO. On the mechanistic origins of toughness in bone. Annu Rev Mater Res 2010; 40 (1): 25-53. DOI:10.1146/annurev-matsci-070909-104427
  5. Zimmermann EA, Kohne T, Bale HA et al. Modifications to Nano- and Microstructural Quality and the Effects on Mechanical Integrity in Paget’s Disease of Bone. J Bone Miner Res 2015; 30 (2): 264-273. DOI:10.1002/jbmr.2340
  6. Seeman E. Mineral Homeostasis. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism: West Sussex, GB: John Wiley & Sons, Inc. 2013, 171-172
  7. Currey JD. Bones: structure and mechanics. Princeton, N. J.: Princeton University Press, 2002
  8. Busse B, Bale HA, Zimmermann EA et al. Vitamin d deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci Transl Med 2013; 5 (193): 193ra88. [Epub 2013/07/12]
  9. Busse B, Hahn M, Schinke T et al. Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling. J Biomed Mater Res A 2010; 92 (4): 1440-1451. [Epub 2009/04/11]
  10. Busse B, Jobke B, Hahn M et al. Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: Matrix incorporation of strontium is accompanied by changes in mineralization and microstructure. Acta Biomater 2010; 6 (12): 4513-4521. [Epub 2010/07/27]
  11. Busse B, Djonic D, Milovanovic P et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 2010; 9 (6): 1065-1075. [Epub 2010/09/30]
  12. Milovanovic P, Zimmermann EA, Hahn M et al. Osteocytic Canalicular Networks: Morphological Implications for Altered Mechanosensitivity. ACS Nano 2013; 7 (9): 7542-7551. [Epub 2013/08/06]
  13. Noble BS, Reeve J. Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol 2000; 159 (1-2): 7-13. DOI:10.1016/S0303-7207(99)00174-4
  14. Turner C. Skeletal Adaptation to Mechanical Loading. Clin Rev Bone Miner Metab 2007; 5 (4): 181-194. DOI:10.1007/s12018-008-9010-x
  15. Wysolmerski JJ. Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone 2013; 54 (2): 230-236. DOI:10.1016/j.bone.2013.01.025
  16. Taylor D, Hazenberg JG, Lee TC. Living with cracks: Damage and repair in human bone. Nat Mater 2007; 6 (4): 263-268. DOI:10.1038/nmat1866
  17. Klein-Nulend J, van der Plas A, Semeins C et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 1995; 9 (5): 441-445.
  18. Adachi T, Aonuma Y, Tanaka M et al. Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body. J Biomech 2009; 42 (12): 1989-1995. DOI:10.1016/j.jbiomech.2009.04.034
  19. Turner CH, Forwood MR. What role does the osteocyte network play in bone adaptation? Bone 1995; 16 (3): 283-285. DOI:10.1016/8756-3282(94)00052-2
  20. Tan SD, de Vries TJ, Kuijpers-Jagtman AM et al. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 2007; 41 (5): 745-751. DOI:10.1016/j.bone.2007.07.019
  21. Kulkarni R, Bakker A, Everts V, Klein-Nulend J. Inhibition of Osteoclastogenesis by Mechanically Loaded Osteocytes: Involvement of MEPE. Calcif Tissue Int 2010: 87 (5): 461-468
  22. Vezeridis PS, Semeins CM, Chen Q, Klein-Nulend J. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun 2006; 348 (3): 1082-1088. DOI:10.1016/j.bbrc.2006.07.146
  23. McGarry JG, Klein-Nulend J, Mullender MG, Prendergast PJ. A comparison of strain and fluid shear stress in stimulating bone cell responses - a computational and experimental study. FASEB J 2005; 19 (3): 482-484.
  24. Turner CH, Owan I, Jacob DS et al. Effects of nitric oxide synthase inhibitors on bone formation in rats. Bone 1997; 21 (6): 487-490. DOI:10.1016/S8756-3282(97)00202-0
  25. Tan SD, Bakker AD, Semeins CM et al. Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem Biophys Res Commun 2008; 369 (4): 1150-1154. DOI:10.1016/j.bbrc.2008.03.007
  26. Da Costa Gómez TM, Barrett JG, Sample SJ et al. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes. Bone 2005; 37 (1): 16-24. DOI:10.1016/j.bone.2004.12.016
  27. Boyde A. The real response of bone to exercise. J Anat 2003; 203 (2): 173-189. DOI:10.1046/j.1469-7580.2003.00213.x
  28. Noble B. Bone microdamage and cell apoptosis. Eur Cell Mater 2003; 6: 46-55. [Epub 2004/01/08]
  29. Dooley C, Tisbo P, Lee T, Taylor D. Rupture of osteocyte processes across microcracks: the effect of crack length and stress. Biomech Model Mechanobiol 2012; 11 (6): 759-766. DOI:10.1007/s10237-011-0349-4
  30. Taylor D, Mulcahy L, Presbitero G et al. The Scissors Model of Microcrack Detection in Bone: Work in Progress. MRS Online Proceedings Library 2010; 1274
  31. Hazenberg J, Taylor D, Lee T. The role of osteocytes and bone microstructure in preventing osteoporotic fractures. Osteoporos Int 2007; 18 (1): 1-8. DOI:10.1007/s00198-006-0222-y
  32. Heino TJ, Kurata K, Higaki H, Väänänen HK. Evidence for the role of osteocytes in the initiation of targeted remodeling. Technol Health Care 2009; 17 (1): 49-56.
  33. Cardoso L, Herman BC, Verborgt O et al. Osteocyte Apoptosis Controls Activation of Intracortical Resorption in Response to Bone Fatigue. J Bone Miner Res 2009; 24 (4): 597-605. DOI:10.1359/jbmr.081210
  34. Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA. Local communication on and within bone controls bone remodeling. Bone 2009; 44 (6): 1026-1033. DOI:10.1016/j.bone.2009.03.671
  35. Regelsberger J, Milovanovic P, Schmidt T et al. Changes to the cell, tissue and architecture levels in cranial suture synostosis reveal a problem of timing in bone development. Eur Cell Mater 2012; 24: 441-458. [Epub 2012/11/29]
  36. Lloyd S, Loiselle A, Zhang Y, Donahue H. Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis. BMC Musculoskeletal Disorders 2014; 15 (1): 122. DOI:10.1186/1471-2474-15-122
  37. Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 2009; 44 (1): 11-16. DOI:10.1016/j.bone.2008.09.017
  38. Bonewald LF. The amazing osteocyte. J Bone Miner Res 2011; 26 (2): 229-238. DOI:10.1002/jbmr.320
  39. Thompson WR, Modla S, Grindel BJ et al. Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone. J Bone Miner Res 2011; 26 (3): 618-629. DOI:10.1002/jbmr.236
  40. You L-D, Weinbaum S, Cowin SC, Schaffler MB. Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A 2004; 278A (2): 505-513
  41. Fritton SP, Weinbaum S. Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction. Annu Rev Fluid Mech 2008; 41 (1): 347-374. DOI:10.1146/annurev.fluid.010908.165136
  42. Tang SY, Herber R-P, Ho SP, Alliston T. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res 2012; 27 (9): 1936-1950. DOI:10.1002/jbmr.1646
  43. Holmbeck K, Bianco P, Pidoux I et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 2005; 118 (1): 147-156. DOI:10.1242/jcs.01581
  44. Eidelman N, Chow L, Brown W. Calcium phosphate saturation levels in ultrafiltered serum. Calcif Tissue Int 1987; 40 (2): 71-78. DOI:10.1007/BF02555708
  45. Price PA, Lim JE. The Inhibition of Calcium Phosphate Precipitation by Fetuin Is Accompanied by the Formation of a Fetuin-Mineral Complex. J Biol Chem 2003; 278 (24): 22144-22152. DOI:10.1074/jbc.M300744200
  46. Parfitt AM. Life history of osteocytes: relationship to bone age, bone remodeling, and bone fragility. J Musculoskelet Neuronal Interact 2002; 2 (6): 499-500. [Epub 2005/03/11]
  47. Seeman E. Age- and Menopause-Related Bone Loss Compromise Cortical and Trabecular Microstructure. J Gerontol A Biol Sci Med Sci 2013; 68 (10): 1218-1225. DOI:10.1093/gerona/glt071
  48. Busse B, Hahn M, Soltau M et al. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 2009; 45 (6): 1034-1043. [Epub 2009/08/15]
  49. Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metabol 2010; 21 (6): 369-374. DOI:10.1016/j.tem.2010.01.010
  50. Frost HM. In Vivo Osteocyte Death. J Bone Joint Surg Am 1960; 42 (1): 138-143.
  51. Tomkinson A, Gevers EF, Wit JM et al. The Role of Estrogen in the Control of Rat Osteocyte Apoptosis. J Bone Miner Res 1998; 13 (8): 1243-1250. DOI:10.1359/jbmr.1998.13.8.1243
  52. O’Brien CA, Jia D, Plotkin LI et al. Glucocorticoids Act Directly on Osteoblasts and Osteocytes to Induce Their Apoptosis and Reduce Bone Formation and Strength. Endocrinol 2004; 145 (4): 1835-1841. DOI:10.1210/en.2003-0990
  53. Frost HM. Micropetrosis. J Bone Joint Surg Am 1960; 42: 144-150.
  54. Aguirre JI, Plotkin LI, Stewart SA et al. Osteocyte Apoptosis Is Induced by Weightlessness in Mice and Precedes Osteoclast Recruitment and Bone Loss. J Bone Miner Res 2006; 21 (4): 605-615. DOI:10.1359/jbmr.060107
  55. Noble BS, Peet N, Stevens HY et al. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Phys Cell Physiol 2003; 284 (4): C934-C943. DOI:10.1152/ajpcell.00234.2002
  56. Kitase Y, Barragan L, Qing H et al. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the β-catenin and PKA pathways. J Bone Miner Res 2010; 25 (12): 2657-2668. DOI:10.1002/jbmr.168
  57. Knothe Tate M, Steck R, Forwood M, Niederer P. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol 2000; 203 (18): 2737-2745.
  58. Boyde A, Hendel P, Hendel R et al. Human cranial bone structure and the healing of cranial bone grafts: a study using backscattered electron imaging and confocal microscopy. Anat Embriol 1990; 181 (3): 235-251. DOI:10.1007/BF00174618
  59. Kingsmill VJ, Boyde A. Mineralisation density of human mandibular bone: quantitative backscattered electron image analysis. J Anat 1998; 192 (2): 245-256. DOI:10.1046/j.1469-7580.1998.19220245.x
  60. Carpentier VT, Wong J, Yeap Y et al. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: Implications for bone remodeling. Bone 2012; 50 (3): 688-694. DOI:10.1016/j.bone.2011.11.021
  61. Bell LS, Kayser M, Jones C. The mineralized osteocyte: A living fossil. Am J Phys Anthropol 2008; 137 (4): 449-456. DOI:10.1002/ajpa.20886
  62. Belanger LF, Jarry L, Uhthoff HK. Osteocytic Osteolysis in Pagets Disease. Rev Can Biol Exptl 1968; 27 (1): 37-44.
  63. Milovanovic P, Rakocevic Z, Djonic D et al. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls. Experimental Gerontology 2014; 55: 19-28. DOI:10.1016/j.exger.2014.03.001
  64. Bernhard A, Milovanovic P, Zimmermann EA et al. Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int 2013; 24 (10): 2671-2680. [Epub 2013/05/02]
  65. Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone 2011; 49 (1): 50-55. DOI:10.1016/j.bone.2010.08.008
  66. Plotkin LI, Lezcano V, Thostenson J et al. Connexin 43 Is Required for the Anti-Apoptotic Effect of Bisphosphonates on Osteocytes and Osteoblasts In Vivo. J Bone Miner Res 2008; 23 (11): 1712-1721. DOI:10.1359/jbmr.080617
  67. Schaffler M, Cheung W-Y, Majeska R, Kennedy O. Osteocytes: Master Orchestrators of Bone. Calcif Tissue Int 2014; 94 (1): 5-24. DOI:10.1007/s00223-013-9790-y
  68. Jan GH, Michael F, Eilis F et al. Microdamage: A cell transducing mechanism based on ruptured osteocyte processes. J Biomech 2006; 39 (11): 2096-2103. DOI:10.1016/j.jbiomech.2005.06.006
  69. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 1994; 27 (3): 339-360. DOI:10.1016/0021-9290(94)90010-8
  70. Knothe Tate ML. „Whither flows the fluid in bone?“ An osteocyte’s perspective. J Biomech 2003; 36 (10): 1409-1424. DOI:10.1016/S0021-9290(03)00123-4

Artikel, die Sie auch interessant finden könnten...

1.
S. v. Stengel, W. Kemmler, K. Engelke

Osteologie 2008 17 1: 24-30

2.
K. Abendroth

Osteologie 2008 17 1: 17-23

3.

H. Haas 1, M. Amling 2, M. Baier 3, T. Blattert 4, E. Euler 5, S. Götte 6, P. Kaps 7, H. Kasperk 3, A. Kurth 8, P.-J. Meeder 3, H. Schwarz 9, W. E. Steinleitner 10, M. Weißkopf11

Osteologie 2008 17 1: 11-16